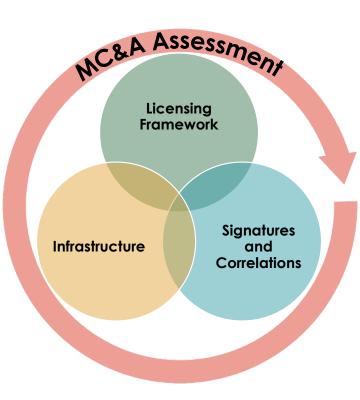


## MC&A for MSRs

#### Michael Dion

dionmp@ornl.gov

Scott Greenwood, Karen Hogue, Sean O'Brien, Logan Scott, Steve Skutnik, Greg Westphal


ORNL is managed by UT-Battelle, LLC for the US Department of Energy



## Objective, Tasking $\rightarrow$ Content

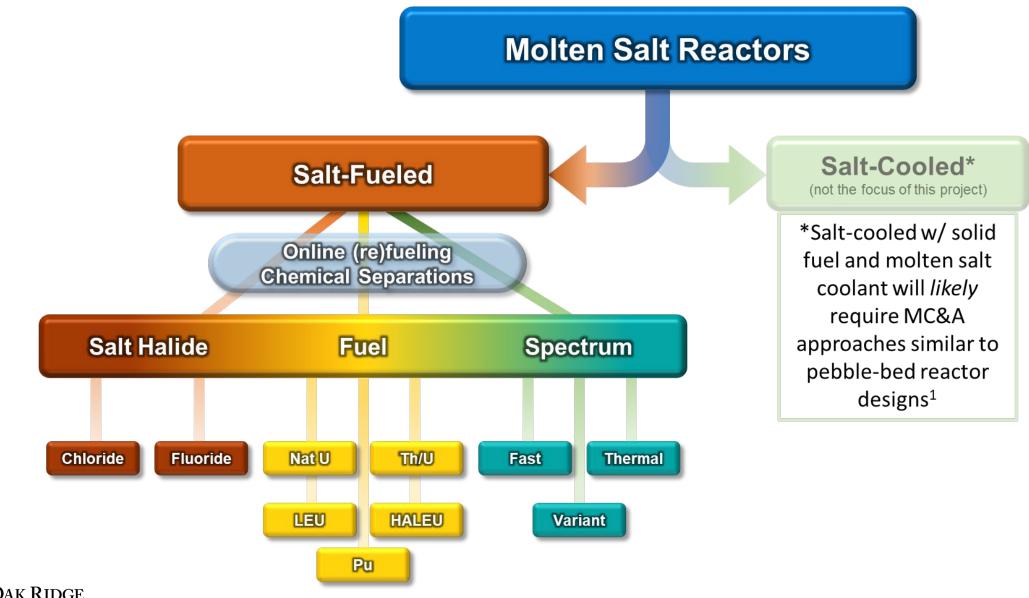
Perform a material control and accounting (MC&A) assessment for (salt-fueled) molten salt reactors.

- 1. Licensing Considerations with NRC input, develop a framework to assist in <u>MC&A and</u> <u>licensing</u> for MSR technologies.
- 2. Supporting Infrastructure identify potential <u>gaps</u> in safeguards approaches or <u>technologies</u> that require a test bed or infrastructure investment(s).
- 3. Develop a Monitoring Approach understand signatures and correlations through systemlevel modeling.





## MSR MC&A Challenges


MSR design concepts can include a wide range of features and characteristics (compared to LWRs).

- **Salt-fueled** fissile and fertile nuclear material dissolved in molten salt.
  - Flowing salt designs and molten salt in fixed geometry (tubes).
- Salt-cooled solid-fueled (TRISO) with molten salt coolant.

This research is focused on salt-fueled  $\rightarrow$  domestic investments and novel MC&A challenges.



## MSR Design Variability

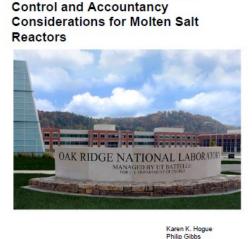


\*OAK RIDGE National Laboratory <sup>1</sup>Kovacic D., Gibbs, P., Scott, L., "MC&A Program Performance Assessments for Pebble Bed Reactors", ORNL/SPR-2019/1175.

## Domestic Safeguards MC&A Considerations

- Regulations in 10 CFR Parts 70 and 74 <u>licensee</u> must develop, present, (and maintain) a nuclear <u>MC&A program</u> to receive license(s).
  - Should consider MC&A and broader safeguards during the design process.
- SNM (Pu, <sup>233</sup>U, enriched U in 233 or 235) falls in 3 main categories:
  - <u>Strategic</u> SNM (CAT I)
  - <u>Moderate Strategic Significance</u> (CAT II)
  - Low Strategic Significance (CAT III)
- Other factors to determine the MC&A requirements:
  - Material dose, accessibility, concentration of SNM.




## MSR MC&A Considerations

- Potential MC&A Approaches
  - 1. Black box (material in  $\leftrightarrow$  material out at some boundary)
  - 2. Process monitoring (terminology explicitly for CAT I, strategic SNM)
    - Processing monitoring could be proposed for Cat II or III SNM.
- Components of item-level MC&A combined with CFR Part 74 requirements typically used for bulk handling facilities (e.g., fuel fabrication in the U.S.).
- Ensure the MC&A program can identify theft of certain amounts within statistical uncertainties and time periods.
  - ...NRC favors a <u>modified</u> MC&A approach utilizing process monitoring techniques for salt-fueled MSRs.
  - ...new NRC requirements will likely be developed.



## MSR MC&A Considerations

- Operations that influence MC&A plan:
  - <u>Access to SNM</u> while operational
    - **CHALLENGE:** High rad and temp, considered online inventory (similarities to enrichment plants).
  - Inventory of SNM during shutdown/drain
    - **CHALLENGE:** SNM will need to be quantified (in place) and/or flushed from system and then quantified.
  - Inventory and confirmation of online (re)fueling
    - CHALLENGE: SNM during refueling will require methods for quantification.
  - <u>Chemical processing</u> and/or separations
    - CHALLENGE: Timely detection <u>cannot</u> only rely on material balance and surveillance - NDA or direct measurements (volumes, tank levels, etc.) are needed.



**Domestic Safeguards Material** 

ORNL/SPR/150504

Fillip Gibbs Michael P. Dion Mike Poore February 2021 February 2021 Mike Is MANAGED BY UT-BATTELIE LIC FOR THE US DEPARTMENT OF ENERGY



# Proposed MC&A Recommendations

- Fresh and end-of-life material/structure/component
  - Quantify SNM in fresh fuel upon arrival
    - Verify S/N, container (tare) weights, intact TID (leverage item counting methods)
  - Incorporate monitoring (e.g., camera surveillance, in situ NDA) to account for all fuel added to the system
    - Direct sampling for DA analysis (in coordination w/ primary loop sampling)
- Online Physical Inventories→Potential Measurement Locations:
  - Drain tank confirm quantities and material inventory
  - Off-gas system determine removal efficiency, identify potential SNM or progeny accumulation (e.g., I, Cs, Sr)
    - Progeny isotopes should be considered in maintenance plan
- Accumulation Points:
  - Off-gas system, salt & air filtration, heat exchanger, pipe baffles, etc.

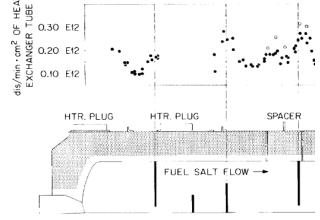



Image of isotope activity variation influenced by MSRE pipe geometry. Image reproduced from ORNL-TM-3151.



## Potential Technologies for MC&A

#### Existing Technology for MSR MC&A:

- HPGe/Gamma Sensors heavily collimated for online in-operation measurements OR traditional lab grade setup
- HKED (Hybrid K-Edge Densitometry) Applied to molten salt samples or 'bypass' loop for actinide concentration measurements
- NPP instrumentation in-core, out-of-core neutron detectors, contamination monitors, etc.
- Methods and techniques from the Uranium Cylinder Verification System (UCVS), CANDU online fuel bundle verification systems, and reprocessing/pyroprocessing facility designs.

#### Technology Under Development (ARS):

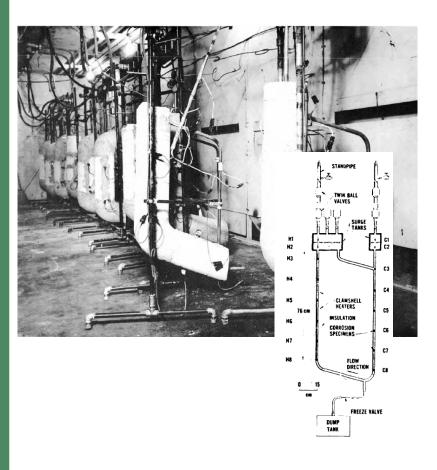
- Ultra high resolution (low energy) (TES) SOFIA @ LANL (M. Croce)
- Neutron methods LANL High Dose Neutron Detector (HDND D. Henzlova)
- UV/Vis/Raman PNNL (A. Lines)
- Flow measurements
  - Electroanalytical sensors & modular test bed (ANL N. Hoyt) (Radiometric? – coolant loop activation or elsewhere)
- New materials for high-rate n/g discrimination @ temp SBIR Radiation Monitoring Devices



# Infrastructure Assessment: What is available?

- Infrastructure needed to support testing, licensing, and technology development for commercial MSRs.
  - Molten Salt Reactor Experiment '65-'69, >600 reports
  - Molten Salt Test Loops convection and forced flow
  - NEXT Lab
  - Versatile Test Reactor
  - Molten Chloride Reactor Experiment
- Potentially support R&D for several advanced reactors

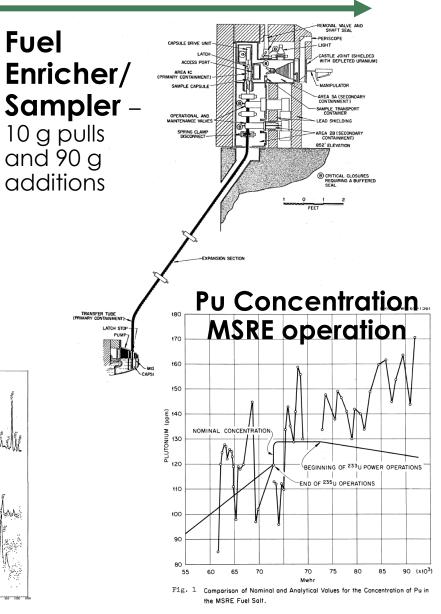



Commercially available forced flow loop from Copenhagen Atomics.



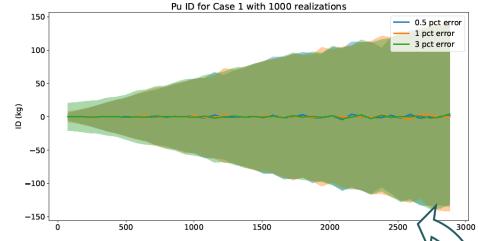
## MSRE Technology...

During operation equipment was designed and installed in various stages


Convection loops helped understand corrosion and longevity



**CAK RIDGE** 

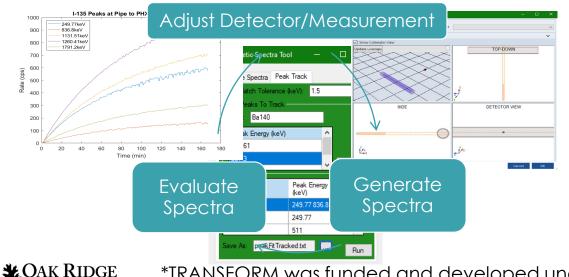

National Laboratory

'65 MSRE critical **Portable Gamma Spectrometer** – ONLY measurements of off-gas radioactivity COLLIMATOR ASSEMBL

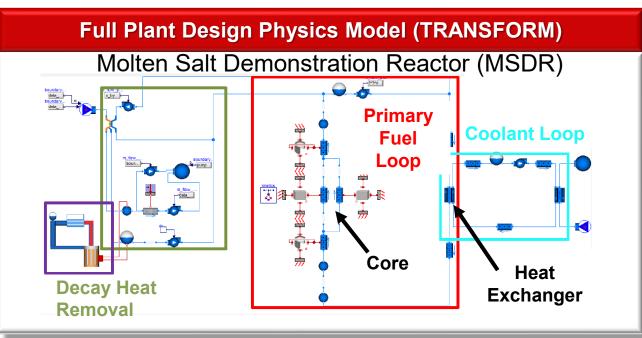


# Infrastructure Assessment: NEEDS

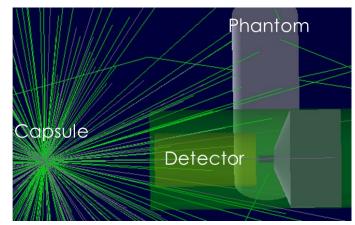
- Advanced Infrastructure Supports:
  - Corrosion/salt chemistry, physical properties of salts, instrumentation longevity tests
  - Online monitoring (assay) of fresh fuel
  - Maintenance and shutdown scenarios
  - Measurements of irradiated salts
  - Instrumentation for fuel monitoring and handling ----
  - Waste fuel, storage and associated monitoring




- <u>Advanced modeling and simulations</u> for fuel-salt (actinide) chemistry, isotopic inventories, and safeguards assessments.
  - Statistical tools to evaluate measurement uncertainty goals SNL (N. Shoman)
  - Dynamic modeling and simulation methods to support MC&A and licensing for MSRs – ORNL (M. Dion)




# Dynamic, System-Level Reactor Modeling

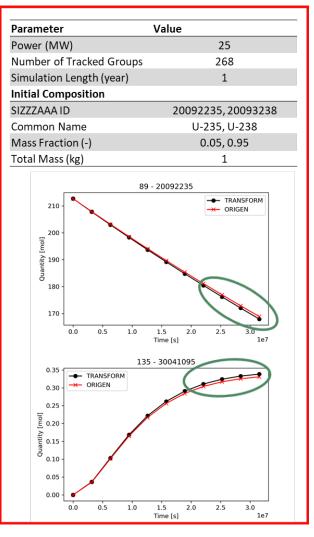

- Transient Simulation Framework of Reconfigurable Modules (TRANSFORM\*) – Extract time-dependent radioisotope concentrations from MSR component (e.g., pipes, tanks)
- Evaluate passive gamma detection, sampling (10 g) – dose and spectra



National Laboratory



- High Fidelity transport modeling:
  - Evaluate dose, complex geometries etc.




\*TRANSFORM was funded and developed under the DOE-NE MSR Campaign

# TRANSFORM Status – Safeguards MC&A support

- Developed primarily for core reactivity and equilibrium confirmation
- Problem:
  - Tracking all fission product isotopes (2000+) is computationally expensive
- Solution:
  - Reduced sets of isotopes (100s) of isotopes will drastically improve the ability of TRANSFORM to be used for these analysis.
  - Still expected to be adequate for the near-term needs of safeguards analysis
  - SCALE/ORIGEN integrated w/ TRANSFORM

"fixed-fuel" simulation w/ reduced isotopic inventory





## Progress & Future Work

- Report on MC&A Considerations complete
  - Infrastructure Assessment, and Signature Evaluations being developed.
- Software and other data analysis tooling developed to provide ways to evaluate model data
- TRANSFORM being expanded to support safeguards of MSRs
  - Non-fixed fuel simulations and larger fission product inventories underway
- Continue to explore signature evolution (e.g., photon spectra) during operation, dose studies, etc.

ARS is developing technology and utilizing modeling and simulation to support MC&A for MSRs.



## Conclusions and Takeaways

...NRC favors a <u>modified</u> MC&A approach utilizing process monitoring techniques for salt-fueled MSRs.

### MC&A Key Points

- > Quantification of fresh fuel additions will likely be needed.
- > "Dual use" physical inventories during operation.
  - e.g., determine off-gas removal eff + confirm or deny presence of SNM.
- Minimizing accumulation points (in design) could reduce potential salt/SNM holdup.
  Infrastructure

#### □ Needed to validate modeling efforts AND provide critical testing structures.

□ Provides a test platform for MC&A technology (what works/what doesn't).

#### ✤ Dynamic Modeling

- System-level dynamic modeling is needed to understand the MSR fuel cycle and related signatures.
- Inform and support MC&A measurement plan including frequency (direct and sampling), dose, technology evaluation, process monitoring, ...

**CAK RIDGE**