The DOE Microreactor Program MARVEL Microreactor

2024 MARVEL Technology Review

March 7th, 2024

John Jackson, Ph.D.| National Technical Director, DOE MRP

DOE Microreactor Program

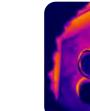
Program Vision

Through cross-cutting research and development and technology demonstration support, the Microreactor Program will enable broad deployment of microreactor technology by:

- Achieving technological breakthroughs for key features of microreactors
- Identifying and addressing technology solutions to improve the economic viability and licensing readiness of microreactors.
- Enabling successful demonstrations of multiple domestic commercial microreactors.

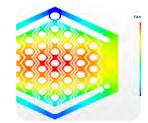
Program Objectives

- Address critical cross-cutting R&D needs that require unique laboratory/university capability or expertise
- Develop R&D infrastructure to support design, demonstration, regulatory issue resolution, and M&S code validation
- Develop advanced technologies that enable improvements in microreactor viability



Microreactor Application

Integrated Nuclear TestingApplied R&D

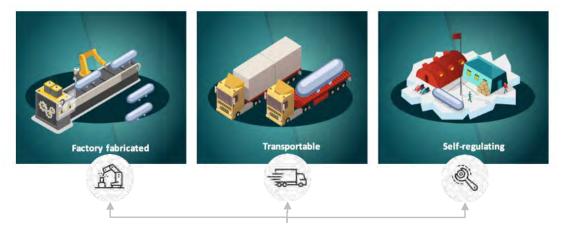


Level

Technology Readiness

Technology Maturation

 Matures fundamental microreactor enabling technologies and capabilities



System Integration & Analyses •Identification of technology and regulatory gaps for Microreactors

Microreactors

Megawatt-scale Advanced Nuclear Reactors

ENABLING TECHNOLOGIES

•

٠

Fuel & Moderator

- Small Core,
- Long life,
- HALEU
- High-T Moderator •

- Reactor Controls
- Automation
- Compact, in-core sensors
 - AI/ ML Remote Control

Power Conversion

- Skid mounted
- High Temp.
- Robust
- Flexible operation

Creep resistance

compliant

ASME Sec III, Div. 5

NQA-1 supply chain

Neutron Reflector

- Low cost
- Manufacturability
 - High moderating ratio
- High temperature

& Siting

Transport

NEPA

•

- Vibration isolation
- Transport shielding
- Licensing
 modernization

Microreactor Concepts Under Development in the U.S. (that we're aware of)

Developer	Name	Туре	Power Output (MWe/MWth)	Fuel	Coolant	moderator	refueling interval	PCU
Aalo Atomics	Aalo One	STR	7 MWe/20MWth	U-Zr-H	Sodium	Н	3-5 years	Steam Rankine
Alpha Tech Research Corp	ARC Nuclear Generator	MSR	12 Mwe/30 MWth	LEU	Flouride salt		intermittent	
Antares Industries		Heat Pipe	1.2 MWth		sodium	graphite		Brayton Cycle
BWXT	BANR	HTGR	17 MWe/50 MWth	TRISO	Helium	graphite	5 years	Brayton Cycle
General Atomics	GA Micro	HTGR	1-10 MWe		gas			?
HolosGen	HolosQuad	HTGR	13 MWe	TRISO	Helium/CO2		10 years	Brayton Cycle
Micro Nuclear, LLC	Micro Scale Nuclear Battery	MSR/heat pipe	10 MWe	UF4	FLiBe	YH	10 years	
Nano Nuclear	Zeus/Odin	HTGR/MSR	1.0 MWe/2.5 MWth	U02	Helium			Brayton Cycle
NuGen, LLC	NuGen Engine	HTGR	2-4 MWe	TRISO	Helium			Integral direct cycle
NuScale Power	NuScale Microreactor	LMTM/heat pipe	<10 MWe	metallic	Liquid Metal	Liquid Metal	10 years	TPV
				metallic (U·				
Oklo	Aurora	SFR	15 MWe	Zr)	Sodium		10+ years	Steam Rankine
Radiant Nuclear	Kaleidos Battery	HTGR	1.2 MWe	TRISO	Helium	graphite	4-6 years	
Ultra Safe Nuclear	MicroModular Reactor	HTGR	5 MWe/15 MWth	TRISO	Helium	graphite	20 years	Rankine
Westinghouse	eVINCI	heat pipe	5 MWe/15 MWth	TRISO	Sodium	graphite	8 years	Brayton Cycle
X-Energy	XE-MOBILE	HTGR	5 MWe/10 MWth	TRISO	Helium	graphite	3+ years	Open air Brayton Cycle

Demonstration Support - SPHERE and MAGNET testbeds

SPHERE - Single Primary Heat Extraction and Removal Emulator

- Single heat pipe coupled to forced convection cooling, surrounded by 6 electrical heaters
- Designed to quantify operational temperatures and heat rejection from of a single heat pipe
- Highly instrumented to measure temperature and strain distributions in a miniature monolithic core block

MAGNET – Microreactor AGile Non-nuclear Experimental Test Bed

- Engineering scale test bed for testing large sections of a monolithic core block with an array (e.g., 37) of heat pipes and electrical heaters
- Capable of testing advanced heat rejection systems or integral effects such as the potential for cascading failures of multiple heat pipes
- Helium component testing

Increasing complexity

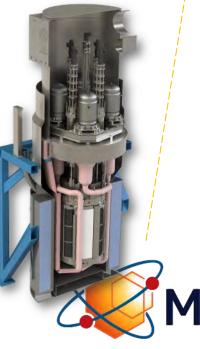
MARVEL Can Enable a New Class of Nuclear Reactors

(Microreactor Applications Research, Validation & EvaLuation)

Project Goals:

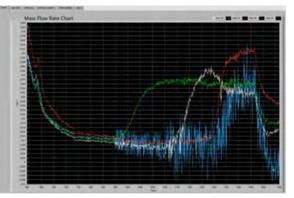
• Development of a small-scale microreactor that provides a platform to test unique operational aspects and applications of microreactors

Primary Objectives:


- Operational microreactor
- Produce combined heat and power (CHP) to a functional microgrid
- Share lessons learned with commercial developers
- Train future operators

U.S. DOE Sponsor Program:

<u>Create</u> momentum, <u>Champion</u> rapid technology maturation to de-risk industry <u>Collaborate</u> and engage microreactor end-user companies

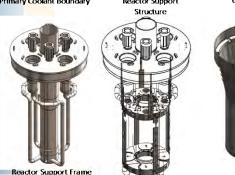


- 85 kW-thermal
- 20 kW-electric
- ~15 feet tall
- < 12 tons
- 2 operators
- Self-regulating

Microreactor

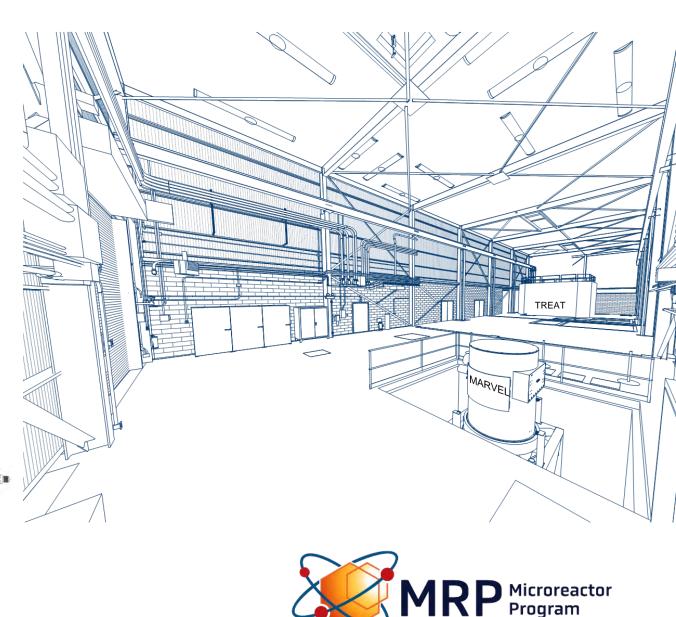
MARVEL Thermal Hydraulic Prototype

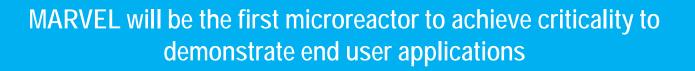
- Thermophysical twin of MARVEL
- Full-scale, electrically heated
- Data used to validate models, per NQA-1
- Initial startup on September 19th, 2023 with demonstration of natural circulation and power generation


NaK flow measurements through 4 loops

Initiation of MARVEL Fabrication Phase

Final Design Review (completed)


- Live Review- Sept 2022 •
- 440+ comments received
- Final comments resolution meeting, Aug 2023
- 90% Design Completion, per DOE-STD-1189 September 29, 2023!
- Release of 260+ documents
- MARVEL officially in fabrication phase
 - Purchased materials, Long Lead Procurement #1 (completed)
 - Fabrication, LLP#2 (initiated)
 - RCS, LLP#3 (initiated)



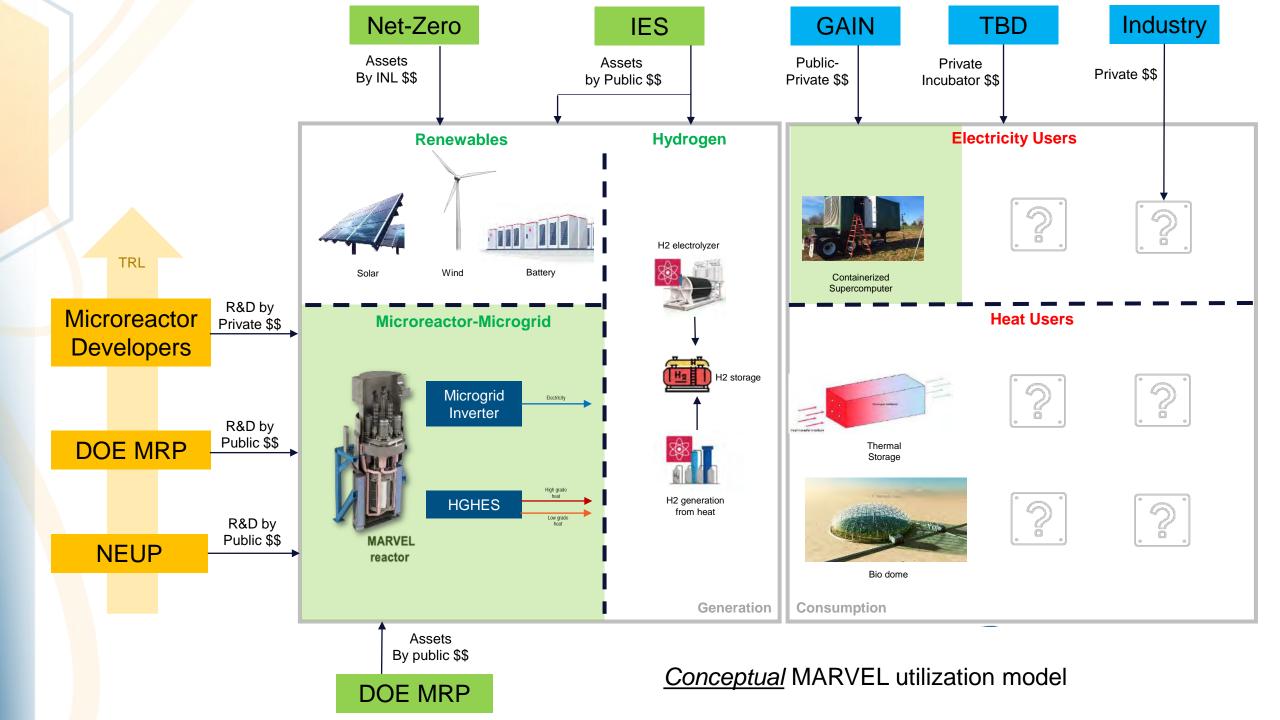
Structur

MARVEL Value Statement for Public/End Users

- Nuclear Energy is <u>new</u> to microreactor entry market
 - Operation complexity
 - Fear of colocation
 - Training needs
 - Reliability
- Customers reluctant to adopt microreactor technology unless they "see one" first (not willing to be the first in their backyard)
- <u>Having no real test reactor is a barrier to market</u> <u>entry</u>
 - End users deem it necessary to "interact" with a microreactor prior to providing customer requirements
 - End users unsure of technology potential prior to interaction

MARVEL Value Statement for Developers

"With many companies working on microreactor concepts behind closed doors, I see unique value in having a system that can be shared and discussed across teams"



Reactor Controls

NEPA

Questions?

https://gain.inl.gov/SitePages/MicroreactorProgram.aspx

